LABORATOIRE D'ACCUEIL : Institut de la Corrosion. Lieu : Fraisses (42).
Contacts
Christophe MENDIBIDE christophe.mendibide@institut-corrosion.fr
Laura MOLI-SANCHEZ laura.moli-sanchez@institut-corrosion.fr
COLLABORATION : CEA Saclay (91).
Contacts :
Marc TUPIN (Directeur de thèse) marc.tupin@cea.fr
Frantz MARTIN frantz.martin@cea.fr

Le stockage de l’énergie est un enjeu crucial dans le cadre du déploiement des énergies renouvelables dans le mix énergétique. L'hydrogène semble en l’état le vecteur énergétique le plus prometteur pour répondre à cette problématique et atteindre à terme la neutralité carbone. De ce fait, le développement d'infrastructures gazières spécifiques est nécessaire. Il s’agira notamment de cavités salines, comme c'est déjà le cas pour le gaz naturel. De plus, les biométhanes issus de la pyrogazéification contiennent 2% d’hydrogène. De l’hydrogène en mélange ou pur sera donc présent dans les infrastructures de gaz naturel existantes. Dans les stockages souterrains, qu'il s'agisse de stockages aquifères ou de cavités salines, de l'eau liquide (ou de la saumure) est en contact avec le gaz. Par conséquent, la teneur en vapeur d'eau du gaz soutiré des stockages est plus élevée que celle du gaz injecté provenant du réseau de transport. Elle peut même atteindre la saturation aux conditions de température et de pression de fond de puits. Par ailleurs, dans des conditions spécifiques (c'est-à-dire des stockages particuliers, majoritairement en nappe aquifère), du « souring » (production d’H2S) peut être observé.
L'injection d'hydrogène, pur ou dans le biométhane mélangé au gaz naturel, dans les équipements des stockages souterrains expose les matériaux à son contact aux risques de fragilisation par l'hydrogène. Ce phénomène physique repose sur l’absorption d’hydrogène par le matériau métallique. Cela a pour conséquence de réduire la force des liaisons interatomiques et in fine de dégrader ses propriétés mécaniques (ductilité, ténacité...). Cette fragilisation peut se traduire par la propagation accélérée (par rapport au gaz naturel) de fissures sur des défauts de la structure. La littérature manque de données sur l'effet de la vapeur d'eau et des faibles teneurs en H2S sur la sensibilité à la fragilisation par l'hydrogène des aciers utilisés dans les infrastructures de stockages souterrains de gaz. Néanmoins, la littérature a mis en évidence l'impact de certaines impuretés du gaz sur la fragilisation des aciers par l'hydrogène. En particulier, l'oxygène inhiberait la fragilisation par l'hydrogène des aciers, tandis que l’H2S agirait comme un catalyseur.
La thèse étudiera une configuration environnementale caractéristique du stockage souterrain de gaz : gaz humide saturé en eau, i.e. avec une couche d'eau liquide superficielle en contact avec la surface du matériau. Deux matrices de gaz seront investiguées : le gaz naturel et l’hydrogène pur. Ces matrices seront mélangées à différentes proportions. Dans ce cadre, le comportement mécanique des matériaux sera testé dans ces milieux gaz naturel/hydrogène en présence ou non des constituants secondaires, qui sont la vapeur d’eau, le sulfure d’hydrogène et/ou l’oxygène.
Ce sujet de thèse vise à identifier les mécanismes d’absorption de l’hydrogène dans les différents milieux mentionnés et son impact sur la dégradation des propriétés mécaniques de matériaux utilisés industriellement pour le stockage souterrain de gaz.
Cela sera réalisé avec des expériences croisées pour comprendre les mécanismes de compétition entre les différentes sources d'hydrogène (H2, H2O, H2S) et l'effet de la formation des couches de surface sur l’acier (par exemple : couches d'oxydes, hydroxydes, carbonates ou de sulfures).
Cette thèse a une base expérimentale conséquente au coeur de la réflexion. Les travaux expérimentaux seront réalisés par l’étudiant-e. La thèse sera organisée de la manière suivante :
1) Réalisation d’une étude thermodynamique à partir des données de la littérature afin d’établir les produits de corrosion stables thermodynamiquement ;
2) Caractérisations expérimentales des produits de corrosion effectivement formés sur l’acier dans les différentes conditions d’exposition ;
3) Elaboration des mécanismes de dégradation chimique des matériaux dans les milieux étudiés et établissement des cinétiques d’absorption d’hydrogène et/ou de croissance de produits de corrosion avec identification des étapes cinétiquement limitantes de ces processus ;
4) Réalisation d’essais de mécanique de la rupture (essais de ténacité) en environnement gazeux à haute pression ;
5) Caractérisations expérimentales des modes d’endommagement ;
6) Identification de la relation entre l’activité de l’hydrogène et les modes d’endommagement.
L’étudiant-e sera employé-e par et basé-e à l’Institut de la Corrosion de Fraisses (42) et sera amené-e à se rendre au CEA Saclay (91) régulièrement pendant les trois années de thèse.
La thèse est financée par STORENGY SAS pour le compte de ces trois filiales de stockage de gaz en France, Allemagne et Angleterre dans le cadre d’un programme de R&D mutualisée.
PROFIL ET COMPÉTENCES RECHERCHÉES
- Master recherche ou ingénieur en sciences des matériaux / mécanique / corrosion.
- Capacité à faire de la bibliographie, effectuer des travaux expérimentaux en autonomie. Esprit de synthèse.
- Appétence pour le développement de nouveaux dispositifs expérimentaux et la recherche dans un contexte industriel.
Industriel : STORENGY SAS.
Contacts :
Clara JUILLET clara.juillet@storengy.com
Xavier CAMPAIGNOLLE xavier.campaignolle@storengy.com
