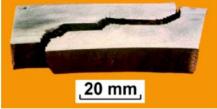


APPLICATION AU CHARGEMENT EN MILIEU H₂S.

JEAN KITTEL

CARACTÉRISTIQUES DES ENVIRONNEMENTS DE LA PRODUCTION DE PÉTROLE ET DE GAZ

- Fluides présents dans les gisements
 - Pétrole ('huile')
 - Gaz naturel
 - Eau
 - Pour 1 baril de pétrole,3 à 5 barils d'eau produits
 - Autres impuretés
 - Gaz acides (CO₂ / H₂S)
 - Acides organiques
 - Bactéries
 - Autres impuretés (particules minérales, sels minéraux, métaux lourds...)



● Température (jusqu'à 250 °C) et pression (> 1000 bar)

FRAGILISATION PAR L'HYDROGÈNE EN PRÉSENCE D'H2S

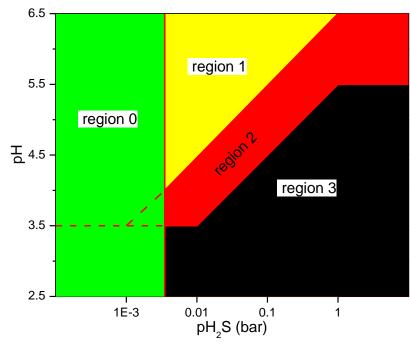
Fissuration due à l' $\rm H_2S$ d'une canalisation.

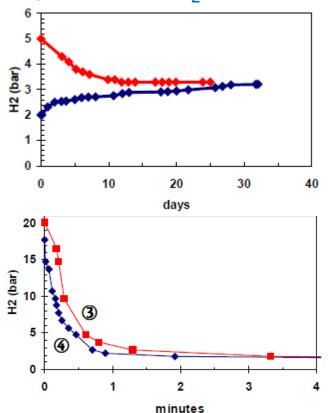
(Source : Crolet, Eurocorr 2001)

Fissuration d'une ligne de torche sur le champ de Lacq.

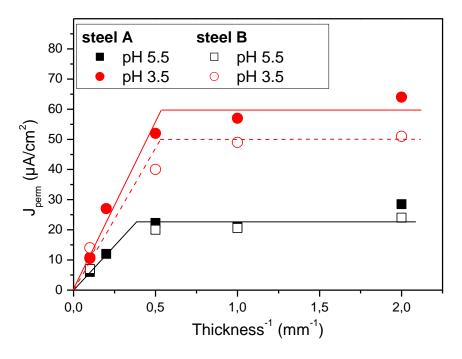
(Source: Crolet, Eurocorr 2001)

Failure of drill pipe in a Lacq well in 1951

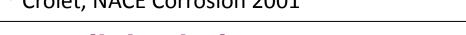



PARTICULARITÉS DU CHARGEMENT EN H PRÉSENCE D'H2S

● Influence du pH et de P_{H2S} sur l'entrée d'hydrogane


* Guide EFC16 (1996)

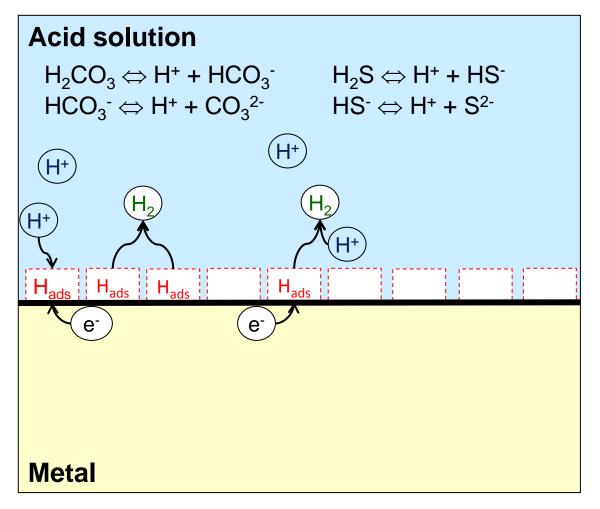
Dégazage très fort en présence d'H₂S



* Crolet, NACE Corrosion 2001

Régimes de membrane mince / membrane épaisse

*Kittel et al., Corrosion (2008)


OBJECTIFS DE LA PRÉSENTATION

- Mise en évidence des processus limitant dans la perméation en fonction de l'épaisseur de membrane et du courant de chargement
- Développements théoriques
 - 1. Application au mécanisme de décharge / recombinaison / adsorption / absorption
 - 2. Solutions analytiques pour différents niveaux de simplification du système
 - 3. Identification des régimes de membrane mince / épaisse et courant fort / faible
- Application: analyse de résultats de la littérature
 - Chargement cathodique en milieu H₂SO₄
 - Chargement à E_{corr} en milieu H₂S
- Discussion

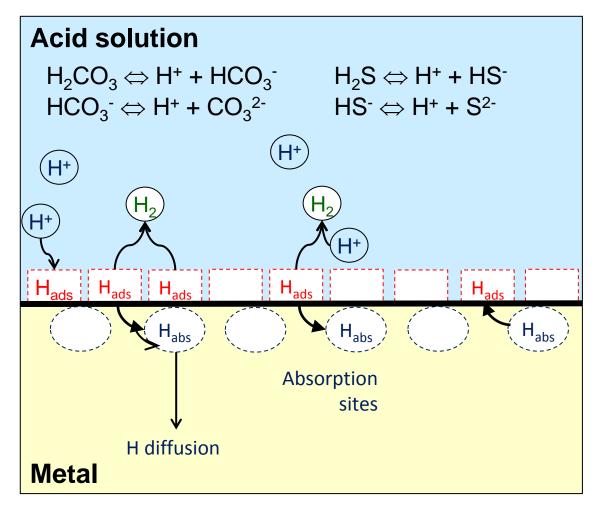
RÉACTIONS DE BASE CONSIDÉRÉES POUR L'ÉTUDE

Réactions classiques "d'évolution" de l'hydrogène (HER)

• Volmer reaction $H^+ + e^- \rightleftharpoons H_{ads}$

$$v_V = k_V(1-\theta) - k_{-V}\theta$$

 $\theta = surface coverage by H_{ads}$


- lacktriangledown Heyrowski $H^+ + H_{ads} + e^-
 ightleftharpoons H_2$ $v_H = k_H heta k_{-H} (1 heta)$
- lacktriangle Tafel $H_{ads}+H_{ads}
 ightleftharpoons H_2$

$$v_T = k_T \theta^2 - k_{-T} (1 - \theta)^2$$

RÉACTIONS DE BASE CONSIDÉRÉES POUR L'ÉTUDE

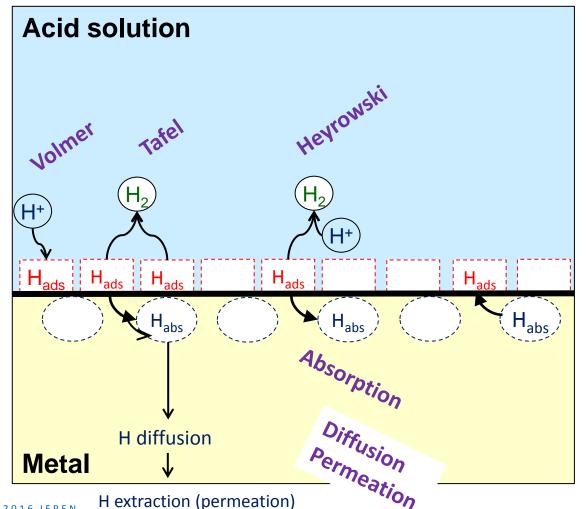
■ Absorption (HAR) et diffusion de l'hydrogène ***

Absorption / désorption

$$H_{ads} \rightleftharpoons H_{abs}$$

$$v_{abs} = k_{abs}\theta \left(1 - \frac{C_0}{C_{max}}\right) - k_{-abs}(1 - \theta) \left(\frac{C_0}{C_{max}}\right)$$

 θ = surface coverage by H_{ads}


 C_0/C_{max} = degree of saturation of H_{abs}

Diffusion

$$v_{perm} = -D \ grad(C)$$

- * Bockris et al., JES (1965)
- **Radhakrishnan & Shreir, Electrochim. Acta (1966)

APPLICATION À LA MEMBRANE PLANE À L'ÉTAT STATIONNAIRE

Stationnarité en face d'entrée

$$v_V = v_{abs} + 2v_T + v_H$$

Pas d'accumulation d'H dans la membrane et extraction en sortie

$$v_{abs} = v_{perm} = D C_0/d$$

$$\frac{C_0}{(C_{max} - C_0)} = \frac{k_{abs}\theta}{\frac{DC_{max}}{d} + k_{-abs}(1 - \theta)}$$

ETABLISSEMENT DES RELATIONS J_{PERM} VS J_{CATH} À L'ÉTAT STATIONNAIRE

$$v_V = v_{perm} + 2v_T + y_V$$

$$v_V = k_V (1 - \theta) - k_V \theta$$

$$v_T = k_T \theta^2 - k_T (1 - \theta)^2$$

$$v_V = k_T \theta^2 - k_T (1 - \theta)$$

$$\frac{C_0}{(C_{max} - C_0)} = \frac{k_{abs}\theta}{\frac{DC_{max}}{d} + k_{-abs}(1 - \theta)}$$

- → Système complexe qui nécessite d'être simplifié
- Simplifications courantes pour l'acier sous chargement cathodique
 - Recombinaison purement chimique (Tafel) Généralement admis pour les milieux acides à faible surtension (< 0,8 à 1 V/SCE) *
 - Réactions Volmer et Tafel retour négligées

ETABLISSEMENT DES RELATIONS J_{PERM} VS J_{CATH} À L'ÉTAT STATIONNAIRE

$$v_{V} = v_{Perm} + 2v_{T} + v_{H}$$

$$v_{V} = k_{V}(1 + \theta) - k_{V}\theta$$

$$v_{T} = k_{T}\theta^{2} - k_{T}(1 + \theta)^{2}$$

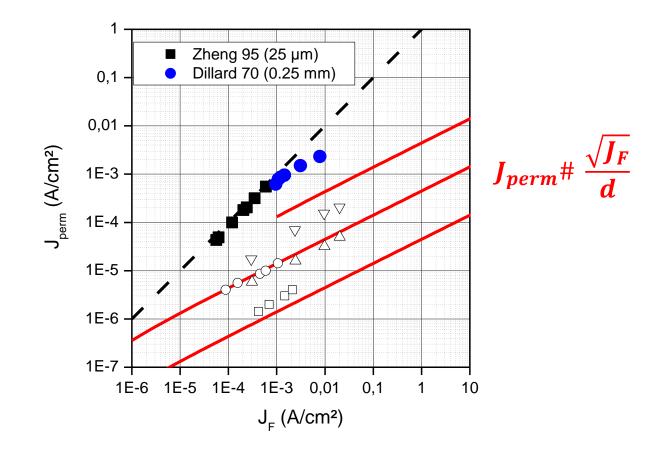
$$v_{H} = k_{H}\theta - k_{H}(1 - \theta)$$

$$\frac{C_0}{(C_{max} - k_0)} = \frac{k_{abs}\theta}{\frac{DC_{max}}{d} + k_{-abs}(1)(\theta)}$$

- Hypothèses simplificatrices supplémentaires : Bockris et al., JES (1965)
 - Faible recouvrement ($\theta << 1$) & faible concentration ($C_0/C_{max} << 1$)
 - lacktriangle Etape limitante : diffusion dans la membrane : DC_{max} / $d << k_{-abs}$
 - lacktriangle Perméation négligeable devant le dégazage : $v_F \gg v_{perm}$

$$d \gg d_{crit} = (DC_{max})/k_{-abs}$$

$$v_F \gg v_{Fcrit} = k_{abs}^2/(2k_t)$$


Expressions simplifiées du flux de perméation

$$v_{perm} = \frac{d_{crit}}{d} \sqrt{v_F \times v_{Fcrit}}$$
 \longrightarrow $v_{perm} \# \frac{\sqrt{v_F}}{d}$

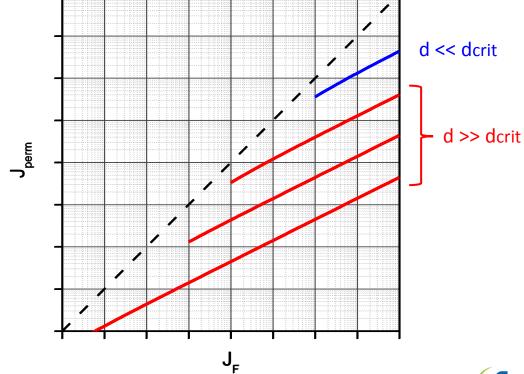
OBSERVATIONS EXPÉRIMENTALES

- Des résultats conformes au modèle
 - Fer Armco sous chargement cathodique dans H₂SO₄ 0,1 N avec palladiage de la face de sortie
 - Bockris et al., JES (1965)
 - Daft et al., Corr. Sci. (1979)
 - Kato et al., Corr. Sci. (1984)
- Et d'autres non...
 - J_{perm} indépendant de l'épaisseur
 - Fer pur, H₂SO₄ + As₂O₃: Dillard, Mem. Sci. Rev. Metall. (1970)
 - J_{perm} proportionel à J_F
 - Palladium très mince, H₂SO₄: Zheng et al., JES (1995)

EXTENSION DU MODÈLE AUX MEMBRANES MINCES

$$v_V = v_{perm} + 2v_T + v_H$$

$$\frac{C_0}{(C_{max} - b_0)} = \frac{k_{abs}\theta}{\frac{DC_{max}}{d} + k_{-abs}(1)\theta}$$


- Diffusion plus nécessairement limitante devant absorption : d peut être inférieur à d_{crit}
- Nouvelle expression de J_{perm}

$$v_{perm} = \left(1 + \frac{d}{d_{crit}}\right)^{-1} \sqrt{v_F \times v_{Fcrit}}$$

Expression limite en membrane épaisse :

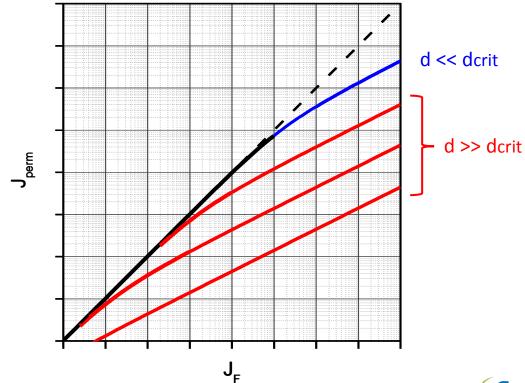
Expression limite en membrane mince :

$$v_{perm} \# \frac{\sqrt{v_F}}{d}$$

EXTENSION DU MODÈLE AUX FAIBLES COURANTS (= MODÈLE IPZ*)

$$v_V = v_{verm} + 2v_T + v_H$$

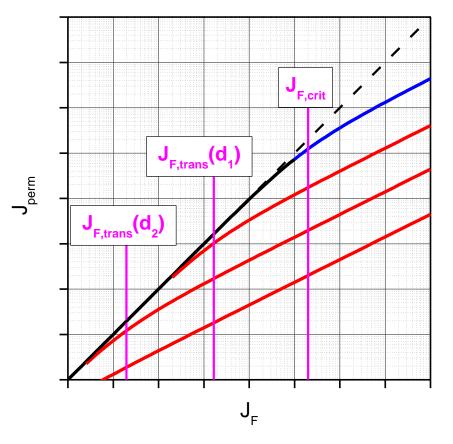
$$\frac{C_0}{(C_{max} - k_{obs})} = \frac{k_{abs}\theta}{\frac{DC_{max}}{d} + k_{-abs}(1 \times \theta)}$$


- Perméation plus nécessairement négligeable devant le dégazage
- Nouvelle expression de J_{perm}

$$v_{perm} = \frac{\sqrt{1 + 4K_2(d)v_F} - 1}{2K_2(d)}$$

$$K_2(d) = \frac{1}{v_{Fcrit}^2} \left(\frac{d}{d_{crit}}\right)^2$$

Expression limite à faible courant :


$$v_{perm} = v_F$$

^{*}Iyer et al., JES (1989)

SYNTHÈSE DES DIFFÉRENTS RÉGIMES ET DES TRANSITIONS

High current / thin membrane

$$J_{perm} \# \sqrt{J_F}$$

High current / Thick membrane

$$J_{perm} \# \frac{\sqrt{J_F}}{d}$$

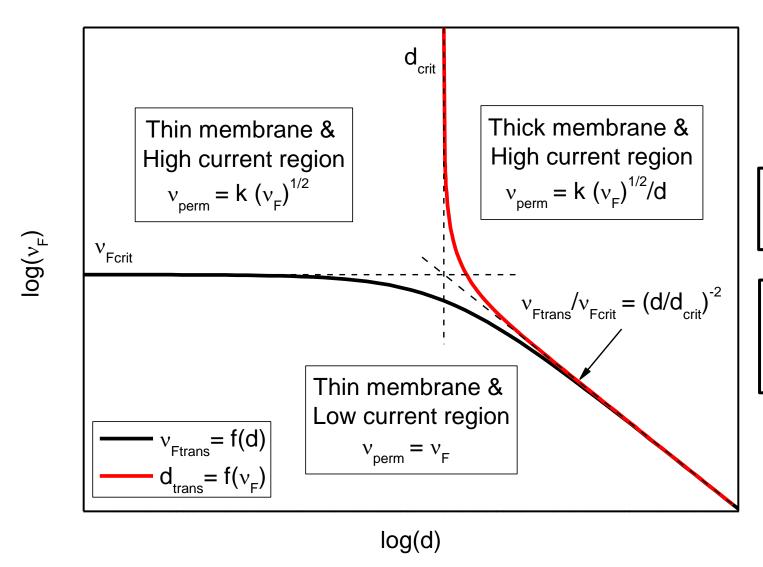
Low current

$$J_{perm} = J_F$$

Expression du courant de transition

$$J_{F,trans} = \left(1 + \frac{d}{d_{crit}}\right)^{-2} \times J_{F,crit}$$

SYNTHÈSE DES DIFFÉRENTS RÉGIMES ET DES TRANSITIONS


$$d >> d_{trans}$$
 $J_{perm} \# \frac{\sqrt{J_F}}{d}$

Expression de l'épaisseur de transition

$$\frac{d_{trans}}{d_{crit}} = \sqrt{\frac{v_F}{v_{F,crit}}} \times \frac{2}{\sqrt{1 + 4\frac{v_F}{v_{F,crit}}} - 1}$$

IDENTIFICATION DES DIFFÉRENTS DOMAINES DE PERMÉATION

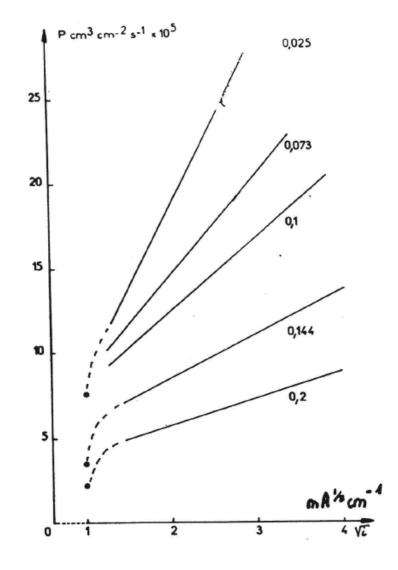
$$J_{F,trans} = \left(1 + \frac{d}{d_{crit}}\right)^{-2} \times J_{F,crit}$$

$$\frac{d_{trans}}{d_{crit}} = \sqrt{\frac{v_F}{v_{F,crit}}} \times \frac{2}{\sqrt{1 + 4\frac{v_F}{v_{F,crit}}} - 1}$$

DISCUSSION : RÉGIMES DE PERMÉATION VS. "MODÈLES ELECTROCHIMIQUES"

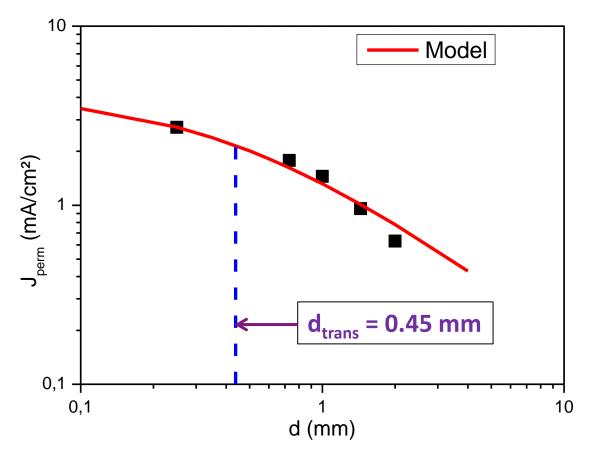
- Les régimes identifiés résultent exclusivement de la compétition entre les réactions en surface d'entrée (chargement et dégazage) et la diffusion en volume
 - → Ils restent valables même si le modèle de chargement (intermédiaire adsorbé) est modifié pour un autre (direct entry ou direct entry through adsorbate)
 - → Leur observation expérimentale ne permet pas par contre de trancher entre ces différents modèles de chargement
 - → Pour d'autres modèles de chargement, seules les expressions littérales de dcrit et Jcrit sont modifiées, pas les tendances générales ni les transitions entre différents régimes

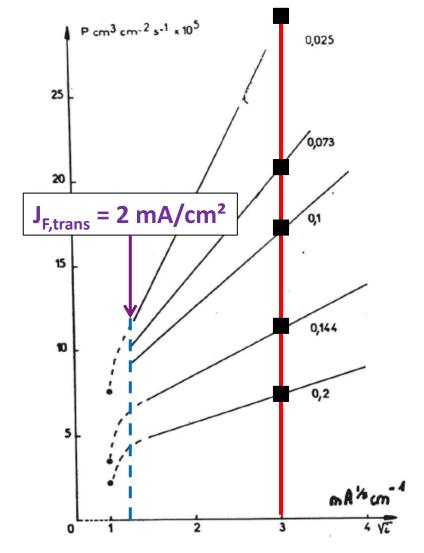
APPLICATION : ANALYSE DE RÉSULTATS DE LA LITTÉRATURE


- Selection de résultats sur fer pur ou acier doux avec palladiage en face de sortie
- Essais sous chargement cathodique ou au potentiel de corrosion
 - Faible effet du piégeage
 - Pas de limitation de la perméation par la face de sortie

Ref	Membrane	Charging condition
Dillard (1970)	Pure iron / 0.25 – 2 mm	$1 \text{ N H}_2\text{SO}_4 + 5 \text{ mg/L As}_2\text{O}_3$
		$J_F = 1 - 10 \text{ mA/cm}^2$
Antano-Lopez (2003)	Armco iron / 0.2 – 2 mm	$1N H_2SO_4 - J_F = 1 - 10 \text{ mA/cm}^2$
Bockris (1965)	Armco iron / 0.77 mm	$0.1N H_2SO_4 - J_F = 0.5 - 10 \text{ mA/cm}^2$
Duval (2004)	Armco iron / 0.5 – 1.5 mm	1 mbar to 1 bar H2S - pH 2.7 to 6
Kittel (2008)	Mild steel / 0.5 – 10 mm	3 to 100 mbar H ₂ S - pH 3.5 to 5.5
Le Boucher (1963)	Mild steel / 0.04 – 0.2 mm	50 mbar H ₂ S - pH 4.5
Plennevaux (2012)	Low alloy steel / 0.5 mm	0 to 50 mbar H ₂ S - pH 4.5

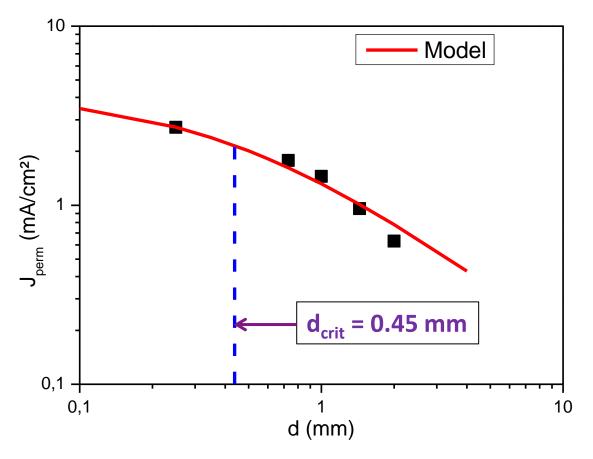
EXEMPLE 1: DILLARD 1970

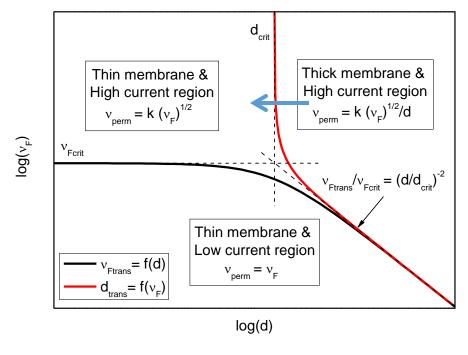

- Membranes en fer Armco
 - **0.25** to 2 mm
- Chargement cathodique avec promoteur
 - \bullet 0.1 N H₂SO₄ + 5 mg/L As₂O₃
- Analyse des données effectué à l'aide du tout nouveau (à l'époque) modèle de Bockris
 - →Tracé des courbes J_{perm} versus J_F^{1/2}
- Observations expérimentales
 - → J_{perm} proportionnel à J_F au dessus de 2 mA/cm²
 - → Déviation à courant faible
 - → Interprété comme un artefact
 - → Ecart à la proportionnalité à 1/d à faible épaisseur
 - → Non relevé par les auteurs



EXEMPLE 1: DILLARD 1970

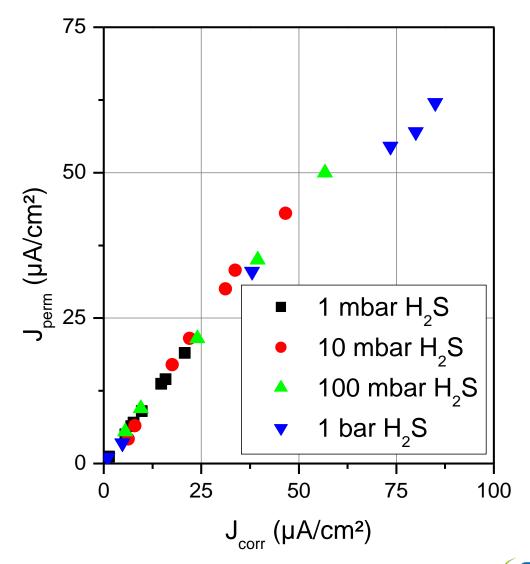
Analyse à l'aide du modèle IPZ: illustration de la transition membrane mince / membrane épaisse



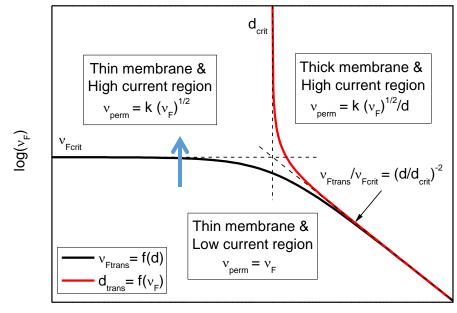


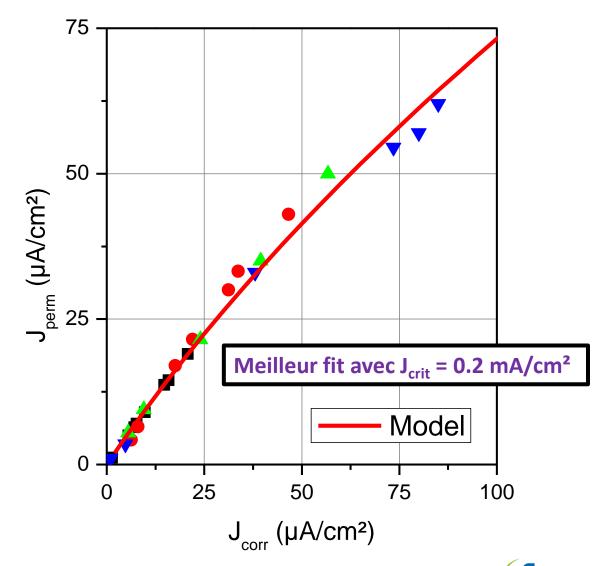
EXEMPLE 1: DILLARD 1970

Analyse à l'aide du modèle IPZ: illustration de la transition membrane mince / membrane épaisse


→ La transition correspond à d_{crit}

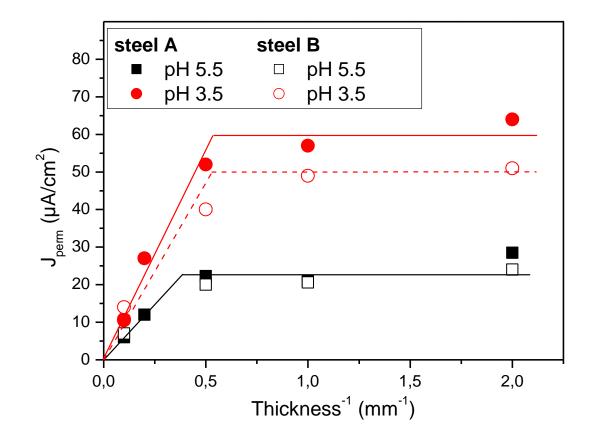
EXEMPLE 2: ANTANO-LOPEZ 2003 & DUVAL 2004


- Membranes en fer Armco
 - **0**.5 à 1.6 mm
- Chargement à E_{corr} en milieu acide sous H₂S
 - 1 mbar à 1 bar H₂S
 - **p**H 2.7 à 6.5
- Evaluation de J_F par mesures de R_D

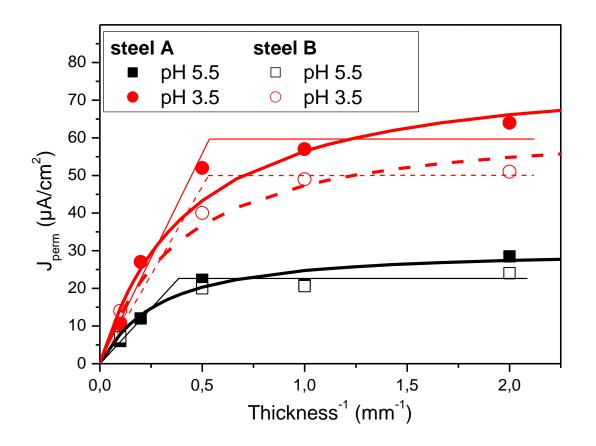


EXEMPLE 2: ANTANO-LOPEZ 2003 & DUVAL 2004

- lacktriangle A faible courant : $J_{perm} = J_F$
 - Domaine membrane mince & courant faible
- A courant plus élevé : J_{perm} ≠ J_F et indépendant de l'épaisseur
 - Domaine membrane mince
- → La transition correspond à J_{crit}



EXEMPLE 3: KITTEL 2008


- Membranes en acier API X65
 - 0.5 mm à 10 mm
- Chargement à E_{corr} en milieu H₂S
 - 3 à 100 mbar H₂S
 - pH 2,8 à 5.5
- Evaluation de J_F par mesures de R_p
- Conclusions du papier de 2008
 - Thick membrane: J_{perm} # 1/d
 - Thin membrane: $J_{perm} = cte$
 - → Transition thickness d_{trans} = 2 to 3 mm

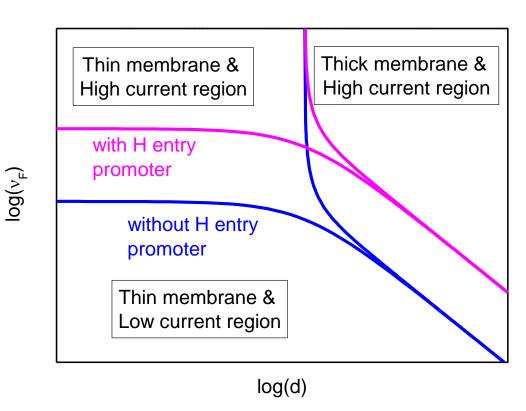
EXEMPLE 3: KITTEL 2008

- Ré-analyse des résultats à l'aide du modèle IPZ
 - Même milieu de chargement que Duval 2004
 - \rightarrow J_{f,crit} = 0,2 mA/cm²
 - Acier différent de Duval 2004
 - → d_{crit} pris comme seul paramètre d'ajustement du modèle
 - → Meilleur fit obtenu pour d_{crit} = 1,2 mm
 - → Correspond à des valeurs de d_{trans} dépendant du pH (en fait de J_F)
 - \rightarrow d_{trans}(pH 3,5) = 1,8 mm
 - \rightarrow d_{trans}(pH 5,5) = 2,9 mm

DISCUSSION: SIGNIFICATIONS DE D_{CRIT} ET J_{CRIT}

D_{crit} caractérise le matériau

$$d_{crit} = \frac{DC_{max}}{k_{-abs}}$$


- Fer Armco \rightarrow d_{crit} ≈ 0,5 mm
- Acier doux Ferrite / pearlite → d_{crit} ≈ 1 mm
- J_{crit} caractérise le milieu de chargement

$$v_{Fcrit} = \frac{k_{abs}^2}{2k_t}$$

$$\bullet$$
 H₂SO_{4 +} PC : J_{F,crit} \approx few μ A/cm²

$$\bullet$$
 H₂SO₄ + As₂O₃ (promoter) + PC : J_{F,crit} \approx 0,5 mA/cm²

$$\bullet$$
 H₂S à E_{corr} : J_{E,crit} \approx 0,2 mA/cm²

CONCLUSIONS

- Selon l'étape limitante (entrée versus diffusion), des régimes de perméation très différents peuvent être observés
 - lacktriangle Régime 1 : membrane mince & faible courant $J_{perm}=J_F$
 - lacktriangle Régime 2 : membrane mince & fort courant $J_{perm} \# \sqrt{J_F}$
 - lacktriangle Régime 3 : membrane épaisse & fort courant $J_{perm} \# rac{\sqrt{J_F}}{d}$
- Les transitions dépendent de l'épaisseur de membrane et du courant de chargement

$$J_{F,trans} = \left(1 + \frac{d}{d_{crit}}\right)^{-2} \times J_{F,crit}$$

$$\frac{d_{trans}}{d_{crit}} = \sqrt{\frac{v_F}{v_{F,crit}}} \times \frac{2}{\sqrt{1 + 4\frac{v_F}{v_{F,crit}}} - 1}$$

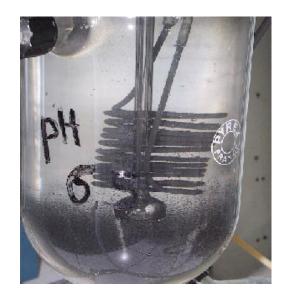
$$v_{Fcrit} = rac{{k_{abs}}^2}{2k_t}$$
 Caractérise le milieu de chargement

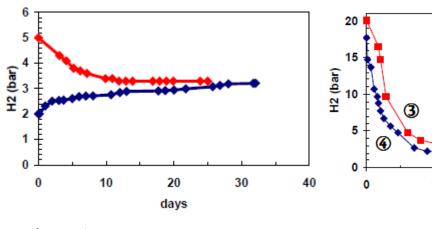
$$d_{crit} = \frac{DC_{max}}{k_{-abs}}$$
 Caractérise le matériau

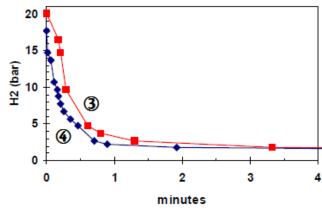
Ces expressions littérales dépendent des modèles réactionnels choisis et des hypothèses simplificatrices retenues

SUJETS DE DISCUSSION

Exploitation pratique de l'analyse

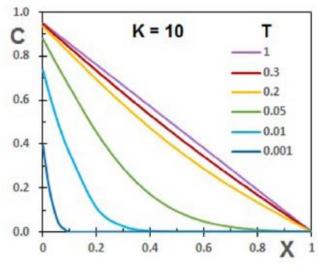

$$v_{Fcrit} = \frac{k_{abs}^2}{2k_t}$$
 $d_{crit} = \frac{DC_{max}}{k_{-abs}}$


- Les principales conclusions de cette analyse traduisent essentiellement les étapes limitantes : elles ne dépendent donc pas du modèle de chargement (Entrée directe ou état intermédiaire adsorbé)
- Les expressions de d_{crit} et J_{crit} données ici sont liées au modèle choisi, mais les domaines de perméation identifiés sont par contre valables quel que soient les modèles d'entrée / dégazage retenus
- d_{crit} et J_{crit} dépendent-ils exclusivement respectivement du matériau et du milieu ?
- lacktriangle Il pourrait être intéressant de déterminer les valeurs de d_{crit} pour différents matériaux et de J_{crit} pour différents milieux de chargement

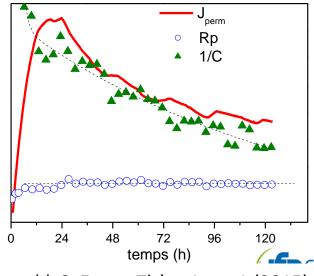


SUJETS DE DISCUSSION

- Spécificités du chargement en milieu H₂S (ou avec promoteurs)
 - Sur le mécanisme d'entrée : il serait plus juste de considérer différentes espèces adsorbées, favorisant plus ou moins le chargement et/ou la recombinaison ?
 - Observation d'un dégazage naturel lors d'expérimentations de type "capteur creux" *
- Avec le modèle développé ici, H_2S contribue à augmenter J_{crit} , par le biais d'une augmentation de k_{abs} (favorise le chargement) et surtout pas à travers une diminution de k_t (théorie de l'empoisonnement)



* Crolet, NACE Corrosion 2001



SUJETS DE DISCUSSION

- Modélisation des transitoires de perméation
 - Hypothèse d'une concentration instantanément constante en entrée probablement souvent erronée *
 - Flux de chargement constant pourrait être plus juste
 - Solutions analytiques des lois de Fick inappropriées
- Particularités du chargement à E_{corr} (& H₂S)
 - Flux de chargement également assez variable, au moins au début des tests **
 - Liens probables avec une diminution de la réactivité de surface (dépôt / ré-organisation des espèces adsorbées...)

* Crolet, Mat. Techn. (2016)

** C. Forot, Thèse Lyon 1 (2015)

Innovating for energy

Find us on:

- www.ifpenergiesnouvelles.com
- **y** @IFPENinnovation

